# Review on Radiation Detection

Jędrek Iwanicki, HIL

## What types of radiation you may expect to "see" during the workshop?

- α particles (calibration of particle detectors, target thickness measurements, nuclear reactions in ICARE)
- Heavy ions (ICARE experiments)
- $\gamma$  rays ( $\gamma$  - $\gamma$  coincidence measurement on EAGLE, timing measurement)
- X-rays (cyclotron RF voltage measurement)
- Neutrons (unlikely but we are prepared)

### **Principles of radiation detection**

All types of radiation I am going to discuss are called *ionising radiation* — just because its energy is high enough to ionize an atom

- Ionization is the main phenomenon that makes radiation detection and measurement possible.
- Charged particles cause ionization of the matter along its path until they stop
- Neutral particles (photons included) need to interact with something that would emit charged particles, this badly affects efficiency.

#### **Obsolete detectors**

- Electrometers
  - Curie electrometer
  - Some still used for radiation protection
- Photographic plate/film
  - Still used for radiation protection
- Cloud / bubble chamber









# Gas detectors: Geiger-Müller tube, proportional chamber



#### **Scintillation detectors**



### Scintillation detectors in EAGLE



Anti-Compton shields (BGO)



Elements of gamma multiplicity filter (BaF<sub>2</sub>) (not in use at the moment)

#### **Scintillation detectors**



Lanthanum Bromide



Caesium Iodide and plastic

# Semiconductor detector – principle of operation





# Semiconductor detector – principle of operation





#### A 3-coil zone refiner



### A zone-refined ingot







### A crystal being grown



### Grinding and slicing of a crystal



### Charged Particle detector how it is made?



Surface Barrier Si Detector
 Ion-Implanted Si Detector

### Charged Particle detector form factors



### **Charged Particle detector**



**ICARE Si Detector** 

#### Particle detectors

- We will be using two types: silicon barrier detectors and gas detectors.
- ICARE uses gas/silicon combination as a particle identification  $E/\Delta E$  telescope





### ICARE telescope – disassembled

- Silicon part below
- Gas part put aside





# Charged particle identification: $E - \Delta E$ telescope



γ-ray interaction with matter

- Photoelectric effect
- Compton effect
- Pair creation







### γ-ray energy spectrum from a single crystal HPGE detector





### **Anti-Compton shield**



### No anti-Compton shield







#### **How** a HPGe detector looks inside?



#### What you need to run it?



Bias power supply

Spectroscopy Amplifier

Fast (timing) Amplifier

### **Neutron** detector – $(n,\alpha)$ capture



← Radiation protection neutron detector (outside the HIL cyclotron vault)

### Calibration of detectors silicon detectors for charged particles

- Energy calibration usually a good, linear response (unless used for heavy, energetic particles)
- Efficiency one may safely assume they are 100% efficient

### Calibration of detectors scintillation detectors for charged particles

- Energy calibration non-linear response
- Efficiency 100% efficient

### Calibration of detectors HPGe detectors for gammas

- Energy calibration linear response
- Efficiency kind of complicated

