Why do we like Coulomb excitation?

e it's a very precise tool to measure the collectivity of nuclear excitations and
In particular nuclear shapes

e shape = fundamental property of a nucleus, "condensed" information
about its structure

e excitation mechanism purely electromagnetic, the only nuclear properties
involved: matrix elements of electromagnetic multipole operators

e nuclear structure information extracted in a model-independent way
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Coulomb excitation method

e Cline’s "safe energy” criterion: purely electromagnetic interaction if the
distance between nuclear surfaces is greater than 5 fm

d=1.25-(AY3 + A, + 5.0 [fm]

e The observed excitation depends on:
o (Z,A) of the collision partners,
o beam energy,
o scattering angle.
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,Safe” bombarding energy requirement

is a consequence of the D, requirement
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Two possibilities to prepare an experiment:
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e choose adequate beam energy (D > D,,,;,, for all )

low-energy Coulomb excitation

[MeV|

e limit scattering angle, i.e. select impact parameter b (E;, 0) > D,,.in

high-energy Coulomb excitation
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e Electromagnetic interaction well-known — one can easily calculate
Coulomb excitation cross section for any states of the investigated
nucleus when its internal structure is known (i.e. matrix elements of
electromagnetic transitions)

o Straightforward method — quantum mechanical treatment: high number
of partial waves, coupled channel equations... IMPRACTICAL !

o Simplified and replaced by a semiclassical approach without any
significant loss of accuracy
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Semiclassical picture of the Coulomb excitation

* Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the
time-dependent electromagnetic field from the projectile acting on the target nucleus

* Assumption: trajectories can be described by the classical equations of motion,
electromagnetic interaction is described using the quantum mechanic.

target
§ b NS .—

projectile

* Validity of semiclassical approach:
1. Aprojectiie << Dmin for a head on collision,

2. small energy transfer,

3. the excitation is induced only by the monopole-multipole interaction,

4. time seperation of the collision (10™° — 10?° s) and deexcitation (10" s) process.
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Validity of classical Coulomb trajectories
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induced Coulomb excitation

e semiclassical treatment is expected
to deviate from the exact calculation
by terms of the order ~ 1/7
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Coulomb excitation theory - the general approach

target
projectile 4

The excitation process can be described by the time-dependent H:
H=H,+ H;+V(r(t))
with H,,; being the free Hamiltonian of the projectile/target nucleus

and V(t) being the time-dependent electromagnetic interaction
(remark: often only target or projectile excitation are treated)

Denoting the P/T wave function by y(t) the time-dependent Schrédinger equation:
ih dy(t)/dt = [H, + H + V (r(}))] y(t)

During the collision, the wave function can be expressed as time-dependent
expansion y(t) = » a.(t) ¢, of the eigenstates ¢, of free H.; what leads to a set
of coupled equations for the time-dependent excitation amplitudes a_(t)

i dﬂn(‘r)/d'r/=§@(¢nlv(f)l b,) expli/h (E,-E,) 1] a,(1)

m - all states involved in the T ‘\

excitation process ) can be written as an Energies of initial and final states
— nr. of coupled equations expansion of multipoles
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Coulomb excitation theory - the general approach

The coupled equations for a_(t) are usually solved by a multipole expansion
of the electromagnetic interaction V(r(t))

projectile

Vo(r) = Z:Z€%r
+ Elp Vo(EAp)
+ E?\.p. V(EA,p)

+ E:w VP(M)‘«a u)
+ Ex,,. Vi (MA,u)
+ O(0h,0'N>0)

target

monopole-monopole (Rutherford) term
electric multipole-monopole target excitation,
electric multipole-monopole project. excitation,

magnetic multipole project./target excitation
(but small at low v/c)

higher order multipole-multipole terms (small)
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Coupled equations
ih da (t)/dt = 3 (o, IV(+. TA )| ¢,) expli/h (E,-E,) ] a.(1)

In the heavy ion induced Coulomb excitation the interaction
strength gives rise to multiple Coulomb excitation

i 3—\_ =Y 6—|—+ ey 4
: L +
nuclear state can be populated indirectly, saa L 163 711 6315 70|7
via several intermediate states 31136
768\ — 1064y 2*
927
0" § 695 ol 528
+
159 §2 536 ’ 1064
The exact excitation pattern is not known 536
The excitation probability of a given excited state might o+ 0

strongly dependent on many different matrix elements. e
o]

l Coulex, HIL, Warsaw, 2007

High number of coupled equations for the da,(t)/dt -> GOSIA code
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Deexcitation process

* For a given set of matrix elements (TA,u) GOSIA solves differential coupled
equations for the time-dependent excitation amplitudes a,(t)

ih da (t)/dt = 3 (6,125 V(. TAWI ¢,) expli/h (E,-E,) t] a (1)

to find level populations and gamma yields.

* The same set of TA,u describes the deexcitation process I
E,
2A+1
P(TA; 1) - A+ 1) 1 B(TA4; L =) 75
/"L((2/1+1)”) h

1
B(TA; I - If) = ﬁﬂf M(TA(TL)

Calculation includes effects influencing y-ray intensities: internal conversion, size of Ge,
y-ray angular distribution, deorientation
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Basic facts about Coulex

e Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |¢) to | f).

e Then it decays to the lower state, emitting a y-ray (or a conversion
electron).

e The matrix elements (f||M (E2)||i) describe the excitation and decay
pattern — they are directly connected with ~-ray intensities observed in the
experiment.

e In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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— to properly describe the excitation process - particle detectors needed
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Stable beam experiments

e usually multi-step excitation and complicated level schemes, search for
subtle effects

e beam intensities of the order of pnA — 10°pps: particle detectors usually
at backward angles

e lifetimes of several states known: no need for other kind of normalisation
e statistics enough for particle-gamma angular correlations
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Exotic beam experiments

e usually one- or two-step excitation; level schemes not well known on the
neutron-rich side

e beam intensities rather low: particle detectors at forward angles to
maximise the statistics

e normalisation to target excitation or Rutherford scattering needed
e low statistics, sometimes only one gamma line observed

e differential measurements at the limits of feasibility

Counts
K

Ca

e high background from 3 decay
— experiments without particle detection impossible

i

Energy keV
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Reorientation effect

e influence of the quadrupole moment of the excited state on its excitation
cross-section

e dependence on scattering angle and beam energy
e direct measurement of the nuclear shape

e BE CAREFUL — influence of double-step excitation of higher states may
have the same effect!
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Coulomb excitation and lifetime measurements
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e results inconsistent with
previously published lifetimes

e new RDM lifetime
measurement:
Koln Plunger & GASP
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Lifetime measurement A. Gérgen etal. EPJ A 26 153 (2005)
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e new lifetimes in agreement with Coulex

e enhanced sensitivity for diagonal and
intra-band transitional matrix elements
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Results: shape coexistence in light Kr isotopes
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First measurement of diagonal E2 matrix elements using Coulex of radioactive beam
E. Clément et al. Phys. Rev. C75, 054313 (2007)
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