Basic facts about Coulex

e Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |:) to | f).

e Then it decays to the lower state, emitting a ~-ray (or a conversion
electron).

e The matrix elements (f||M(E2)||i) in the laboratory frame describe the
excitation and decay pattern so they are connected with ~-ray intensities
observed in the experiment.

e In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Basic facts about Coulex experiments

e Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i) to | f).

— Cline’s "safe energy" criterion — if the distance between nuclear surfaces
IS greater than 5 fm, the nuclear interaction is negligible.

e Then it decays to the lower state, emitting a ~-ray (or a conversion
electron).
— gamma detectors needed

e The matrix elements (f||M(E2)||i) in the laboratory frame describe the
excitation and decay pattern so they are connected with ~-ray intensities
observed in the experiment.

— to properly describe the excitation process - particle detectors needed

e In the Intrinsic frame of the nucleus they are related to the deformation
parameters.
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Why do we like Coulomb excitation?

e it's a very precise tool to measure the collectivity of nuclear excitations and
In particular nuclear shapes

e shape = fundamental property of a nucleus, "condensed" information
about its structure

e excitation mechanism purely electromagnetic, the only nuclear properties
Involved: matrix elements of electromagnetic multipole operators

e nuclear structure information extracted in a model-independent way

22
At=2-10s N Ao

Magda Zielihska, CEA Saclay HIL student workshop, 1 March 2012 - p. 5/23



Coulomb excitation method

e Cline’s "safe energy” criterion: purely electromagnetic interaction if the
distance between nuclear surfaces is greater than 5 fm

d=1.25-(AY3 + A, + 5.0 [fm]

e The observed excitation depends on:
o (Z,A) of the collision partners,
o beam energy,
o scattering angle.
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,Safe” bombarding energy requirement

is a consequence of the D, requirement

target

{ b(Ey,.0)

projectile

ZpZy ,AD + A ,
Dmin At

Eb(ecm) = 0.72

Two possibilities to prepare an experiment:

1+

1

. (0.,
sin( —cm
7

e choose adequate beam energy (D > D,,,;,, for all 0)

low-energy Coulomb excitation

[MeV|

e limit scattering angle, i.e. select impact parameter b (E;, 0) > D,,in

high-energy Coulomb excitation
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o Electromagnetic interaction well-known — one can easily calculate
Coulomb excitation cross section for any states of the investigated
nucleus when its internal structure is known (i.e. matrix elements of

electromagnetic transitions)

o Straightforward method — quantum mechanical treatment: high number
of partial waves, coupled channel equations... IMPRACTICAL !

o Simplified and replaced by a semiclassical approach without any
significant loss of accuracy
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Semiclassical picture of the Coulomb excitation

* Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the
time-dependent electromagnetic field from the projectile acting on the target nucleus

* Assumption: trajectories can be described by the classical equations of motion,
electromagnetic interaction is described using the quantum mechanic.

target
Ib "\f.—

projectile

» Validity of semiclassical approach:
1. Aprojectiie << Dmin for a head on collision,

2. small energy transfer,

3. the excitation is induced only by the monopole-multipole interaction,

4. time seperation of the collision (10™° — 10?° s) and deexcitation (10" s) process.

Magda Zielihska, CEA Saclay HIL student workshop, 1 March 2012 - p. 9/23
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* Projectile is moving along the hyperbolic orbit and the nuclear excitation is caused by the
time-dependent electromagnetic field from the projectile acting on the target nucleus

* Assumption: trajectories can be described by the classical equations of motion,
electromagnetic interaction is described using the quantum mechanic.
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Validity of classical Coulomb trajectories

projectile o V. target . P
b=0 .+————————“f D .
=
Aprojectie << D => Sommerfeld parameter n s -
.g 100 | T .
D Z,Z-e £ r
= = P=T >>1 % -
2L v 5 [
@ 10
. . _ E f
e 1 » 1 required for a semiclassical E
treatment of equations of motion @ :
—hyperbolic trajectories 1 . AN
« condition well fulfilled in heavy-ion 0 S 070
2

iInduced Coulomb excitation

e semiclassical treatment is expected
to deviate from the exact calculation
by terms of the order ~ 1/n
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Coulomb excitation theory - the general approach

target
projectile -

The excitation process can be described by the time-dependent H:
H=H,+ H; +V (r(?))
with H,; being the free Hamiltonian of the projectile/target nucleus

and V(t) being the time-dependent electromagnetic interaction
(remark: often only target or projectile excitation are treated)

Denoting the P/T wave function by y(t) the time-dependent Schrédinger equation:
ih dy(t)/dt = [H, + Hy + V (r(t))] p(t)

During the collision, the wave function can be expressed as time-dependent
expansion y(t) = » a.(t) ¢, of the eigenstates ¢, of free H.; what leads to a set
of coupled equations for the time-dependent excitation amplitudes a_(t)

i dﬂn(‘r)/d'r/=§a(¢nlv(*)l b,) expli/h (E,-E,) 1] a,(1)

m - all states involved in the T \

excitation process ) can be written as an Energies of initial and final states
— nr. of coupled equations expansion of multipoles
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Coulomb excitation theory - the general approach

The coupled equations for a_(t) are usually solved by a multipole expansion
of the electromagnetic interaction V(r(t))

projectile

Vi(r) = Z:Z€%r
+ Elp Vo(EAp)
+ E?\.p. V(EA,w)

+ EM VP(M}‘«a uw)
+ zx,,. Vi (MA,u)
+ O(0h,0'N>0)

target

monopole-monopole (Rutherford) term
electric multipole-monopole target excitation,
electric multipole-monopole project. excitation,

magnetic multipole project./target excitation
(but small at low v/c)

higher order multipole-multipole terms (small)
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Coupled equations
ih da (t)/dt = 3 (6, IV(+. TA. )| ¢,) expli/h (E,-E,) 1] a,(t)

In the heavy ion induced Coulomb excitation the interaction
strength gives rise to multiple Coulomb excitation

i 3—\_ =Y 6—|—+ 158 001 4
. " +
nuclear state can be populated indirectly, glg &£ o3 i1 ek L
via several intermediate states 31136
77777 08 N 11064y 2
927
0" § 695 Sul 528
+
159 §2 536 I 1064
The exact excitation pattern is not known 536
The excitation probability of a given excited state might o+ 0

strongly dependent on many different matrix elements. T
o]

i Coulex, HIL, Warsaw, 2007

High number of coupled equations for the da,(t)/dt -> GOSIA code
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Deexcitation process

* For a given set of matrix elements (TA,u) GOSIA solves differential coupled
equations for the time-dependent excitation amplitudes a _(t)

ih da (t)/dt = 3 (6,125 V(. TAWI ¢,) expli/h (E,-E,) t] a, (1)

to find level populations and gamma yields.

* The same set of TA,u describes the deexcitation process I
E,
2A+1
P(12; 1 1) =T D LE g g1y
)L((2)L+1)”) h

1
B(TA; I —1I¢) = m~(1,c M(TA(T)?

Calculation includes effects influencing y-ray intensities: internal conversion, size of Ge,
y-ray angular distribution, deorientation
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Stable beam experiments

e usually multi-step excitation and complicated level schemes

e for deformed nuclei it may be useful to couple all matrix elements inside
each rotational band

e beam intensities of the order of 10”pps: particle detectors at backward
angles

e lifetime of several states known: no need for other kind of normalisation
e statistics enough for particle-gamma angular correlations
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Exotic beam experiments

e usually one- or two-step excitation; level schemes not well known

e beam intensities rather low: particle detectors at forward angles to
maximise the statistics

e Normalisation to target excitation
e low statistics, sometimes only one gamma line observed

e relative normalisation of different ranges of scattering angles based on
Rutherford scattering or target excitation

CD detector

YAr

EXOGAM
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B(E2)’s in radioactive nuclei measured with Coulex

e usually only 2t — O™ transition visible

L L 2"
e normalisation to target excitation needed
+
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o Coulex cross-section depends both on the B(E2;2; —0*) and the
guadrupole moment!
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Reorientation effect

e influence of the quadrupole moment of the excited state on its excitation
Cross-section

e dependence on scattering angle and beam energy

e BE CAREFUL - influence of double-step excitation of higher states may
have the same effect!
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Coulomb excitation and lifetime measurements
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e results inconsistent with
previously published lifetimes

e new RDM lifetime
measurement:
Koln Plunger & GASP
“0Ca (*°Ca,a2p) ™“Kr
40Ca (*°Ca,4p) "°Kr

e subdivision of data in several ranges of
scattering angle

and mixing ratios)

e least squares fit of ~30 matrix elements
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Lifetime measurement A. Gorgen etal. EPJ A 26 153 (2005)

old new old new
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e new lifetimes in agreement with Coulex

e enhanced sensitivity for diagonal and
Intra-band transitional matrix elements
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Results: shape coexistence in light Kr isotopes

"°Kr: 18 transitional + 5 diagonal ME
"Kr: 14 transitional + 5 diagonal ME
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First measurement of diagonal E2 matrix elements using Coulex of radioactive beam

E. Clément etal. Phys. Rev. C75, 054313 (2007)
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Gamma-particle angular correlations

e feasible at several thousands of counts in a given gamma line
e determination of E2/M1 mixing ratios

e determination of spin of a decaying level

e distribution in phi usually more conclusive than in theta
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