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Inftfroduction

® Quantum dynamics of complex systems
(nuclei, molecules, BEC, atomic clusters...)

@ Collectivity: from vibrations to collisions

@ Interplay with single-particle d.o.f. (Giant
Resonance decay, Competition fusion/
transfer...)

@ Quantum many-body problem



Microscopic, up to which scale?

Physics of Hadrons

Physics of Nuclei
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Microscopic, up to which scale?
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Microscopic, up to which scale?
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Hamiltonian




Hamiltonian

Separation into a mean field U and a residual interaction
N

V=U=+V with U = Y (i)

res
=1

Mean-Field approximation: neglect Vres

Each nucleon is assumed to evolve independently in the MF generated by
the other nucleons. The interactions are «averaged» into a MF.
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Separation into a mean field U and a residual interaction
N

V=U=+V with U = Y (i)
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Mean-Field approximation: neglect Vres

Each nucleon is assumed to evolve independently in the MF generated by

the other nucleons. The interactions are «averaged» into a MF.
Justified by the mean free path of a nucleon in the nucleus of the order of the

size of the nucleus, thanks to the Pauli principle:
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Hamiltonian

Separation into a mean field U and a residual interaction
N

V=U=+V with U = Y (i)

res
=1

Mean-Field approximation: neglect Vres

Each nucleon is assumed to evolve independently in the MF generated by

the other nucleons. The interactions are «averaged» into a MF.
Justified by the mean free path of a nucleon in the nucleus of the order of the

size of the nucleus, thanks to the Pauli principle:
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Hartree-Fock

® Mean-field determined from the interaction
N

a(s) = D (el 5)|es)
=4
@ Self-consistent mean-field

U = 4lp1, 2, - - on| = Ulp)
@ HF equation

~2
(me | ﬁ[ﬂ]) ;) = hlpl|lp:) = eilp;) fori=1,2---N




Practical aspects of HF calculations

Imaginary time method

for a ground state with no self-consistency ( h = h| p] ):
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Practical aspects of HF calculations

HF calculations
Start with Nilsson or harmonic oscillator w.f.
Imaginary time method

for a N lowest states of h[p]: iterative process (evolution with Aﬁ )
{_|99[1n]> o |\,9[{L]>} — /)[n] — pntl — [p[n]]
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(Graham-Schmidt orthonormalization)



Practical aspects of HF calculations
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Practical aspects of HF calculations

Occupied neutron w.f.

HF calculations

Start with Nilsson w.1.

Imaginary time method

ev8, P. Bonche et al., Comp. Phys. Com. 171, 49 (2005)
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Ground-state density from HF calculations

Nuclear Charge Density of Mercury (Z=80)

Nuclear Charge Density of Lead (Z=82)




Ground-state density from HF calculations

filling of 3s1/2 shell -

Nuclear Charge Density of Mercury (Z=80)

Nuclear Charge Density of Lead (Z=82)




Excited states

@ single-particle excitations
@ Low-lying collective vibrations

® Gliant resonances



Interpretation of °°Sn
(Z=50, N=80) spectrum
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Interpretation of 2°Sn
spectrum
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Interpretation of 2°Sn
spectrum
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Interpretation of 2°Sn
spectrum
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' R => low-lying

collective vibration
# HF eigenstate




